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CHAPTER 6 LEAST SQUARES PROBLEMS, INTERPOLATION
AND POLYNOMIAL APPROXIMATION

In this Chapter, you will learn:

e interpolation and extrapolation,

e three types of least squares approximation,
e Taylor polynomial,

e Lagrange’s polynomial,

e Newton’s divided-difference polynomial.

1. INTERPOLATION AND EXTRAPOLATION

Y/
//
a XO Xk Xn b g

Suppose that the function y = f(x) is known at the (n+1) data points(X,, Yo )---»(X,, ¥, ),
where the values x, are spread out over the interval [a,b] and satisfy

a<Xx, <X <..<X, <b,and vy, = f(x,).

A polynomial P, (x) of degree n shall be constructed which passes through these (n+1)
data points. In the construction, only the numerical values x, and y, are needed. Hence,
the higher-order derivatives are not necessary. The polynomial Pn(x) can be used to
approximate over the interval [a,b] . The function y, = f(x,) is available only at (n+1)
tabulated data points and a method is needed to approximate f(x) at non-tabulated
abscissas.
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Interpolation

Interpolation is a method of constructing new data points within the range of a discrete
set of known data points. When x, < x, < X, the approximation y, = P, (x, ) is called an

interpolated value.

Extrapolation

Extrapolation is a method of estimating, beyond the original interval [a, b]. If either
X, <X, Or X, > X, , then the approximationy, = P,(x, ) is called an extrapolated value.

Extrapolation assumes that the behavior of f(x) outside the range [a,b] is identical to
that inside the range and this may not always be valid.

2. LEAST SQUARES APPROXIMATION

Function approximation is closely related to the idea of function interpolation. In function
approximation, we do not require the approximating function to match the given data
exactly. The most common method of approximating data is the least squares
approximation.

The method of least squares seeks to minimize the sum (all the tabulated data points) of
the squares of the differences between the function value and the data value (total squared
error). The minimum of the total squared error is attained when its partial derivatives are
zero.

Linear Least Squares

There are n set of observations of related data, (x,, Y, ),(X,, ¥, )--»(X,, Y, ). Let
y =a+bx 1)

be the equation to the linear line of best for them. We have to find the constants a and b.
For any x,, the expected value of y is y, , the value calculated from the Equation (1) is

Y, =a+bx,
and the observed value of y is y;. The deviation (error) is
d; =y, _(a+bxi)

By giving the values i =1,2,3,...n, we get the various of deviation.
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Let E(a,b) be the sum of squares of the deviations:
E(a,b)=>"[y, —(a+bx)]?
For E(a,b) to be minimum, the conditions are:

0E(a,b) _ 0 and oE(a,b)
oa ab

=0

From the above conditions, we have the following least squares normal equations:

b (gh-5o

We may get the values of a and b by solving the least squares normal equations as shown

below:

i=1 i=1l i=1

anxizzn:yi_znlxiyizn:xi nznlxiyi_zn:xi
P i=1 i=1 2i:1 p=_iZ —

n

wele] Ee

i=1l

>
i=1
2

By having the values of a and b, we get the equation of the best fit linear line.
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Example 1: Consider the following data:

(@) Use the method of least squares to find the equation of the best fit linear line.

Xi Yi X; XiYi
-1 10 1 -10
0 0 0
1 7 1 7
2 5 10
3 4 9 12
4 3 16 12
5 0 25 0
6 -1 36 -6
20 37 92 25
iniyi —ixiyiixi
== = W= S
nzn: X7 — (Zn: X, j
=) i
nzn:xiyi —Zn:xizn:yi
b=—= =1 ‘:lz =
nZn: X7 — (Zn: e j
i =)
a=38.6428571 b =-1.6071429

The equation of the best fit linear line is

(b) Estimate the value of y when x =1.5.
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Polynomial Least Squares

The method of least squares approximation data fitting is not restricted to linear function,
f(x)=a+bx only. As a matter of fact, in many cases data from experimental results are

not linear, so we need to consider some other guess functions. Suppose that the guess
function for the data is a polynomial. The m-th degree polynomial for n data pairs is
expressed in the following.

P

m

(x)=a, +a,x+a,x* +a,x* +...+a, x"
m
= a,x"
k=0

According to the least squares approximation, we need to find the coefficients
ay,8,,...,a,, that minimized

m

El@0a,-) = D 1y, P ]

E(a,,a,,...,a, ) is minimum if

0 i
aleE(ao,ai,...,am)z 0; j=01..,m

From the above conditions (minimizing the sum of squares), we have m+1 least squares
normal equations

an ) X
22X, a,) X

+ ap Z X\ = Z Yi
+ a, z X = Z X Yi
Ch z Xi2 + a4 z Xi3 a, Z Xim+2 = Z Xi2 Yi 2)
: n : : :
+

a, z Xim alz Xim+1 a, z Xi2m = z Xim Yi

The coefficients a,,a,,...,a, can be found by solving the matrix of the linear system in
Equation (2).

+ + + + +
+ + + + +
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Exponential Least Squares

In many cases data from experimental tests are not linear. So, we need to fit the data with
some functions other than polynomial function. Here, we broaden the least squares
approximation to a popular form, exponential form.

Suppose we want to fit the data by a non-linear function, exponential function that is
expressed as

y=ae”™ or y=ax" (3)

The non-linear function in Equation (3) is usually linearized by taking logarithm before
determining the parameters:

Iny=Ina+bxoriny=Iha+blnx

Wenowset Y =Iny; A=Ina; X =Inx to geta linear function of x or In xas
described earlier:

Y =A+bxorY =A+bX

Finally, transform the points (x;,y;) to the points (x;,Iny,) or (lnx,,Iny,) and use the

linear least squares described in Section 2.1 to get A and b . Having obtained A andb,
we use the relations

a=e” and b=b

to obtain a and b.
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In order to obtain the values of Aand b, we must have the following least squares normal

equations:
Case 1: y = ae™

Iny=Ina+bx=>Y = A+bx

b g

= i=1 i=1

Case 2: y=ax’

Iny=Ina+blnx=Y =A+bX

nA+[in)b _ Z:‘Yi
Sheh g

2ol

i=1 i=1

b= HZX‘Yi ) ZXaZYi

i=1 i=1

N
A:in;Yi ;X'Y'ZX'

A:ZXiZZY‘_ZXiYini
niX'Z[iX'JZ
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Example 2: Consider the following data, find an equation of the form y = ae™

y:aebx
Iny =Ina+bx

SetY=Iny; A=Ina:Y =A+bx

X 0 5 10 15 20 50

Y, 1.945910 | 2.397895 | 2.772589 | 2.995732 | 3.258097 | 13.370223

X] 0 25 100 225 400 750

Y. 0 11.989475 | 27.72589 | 44.93598 | 65.16194 | 149.813285
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3. TAYLOR POLYNOMIAL

Suppose that we want the best nt" degree approximation to f(x) at x=a.
We compare f(x) to
P(x)=a,+a(x-a)+a,(x—a)’ +a,(x-a)’ +...+a,(x—-a)"

n

We make the following observations:
f(a)=P,(a)=a, = a, = f(a)

n

f'(a)=P,(a)=a, +2a,(x—a)+3a,(x—a)* +..+na,(x—a)"

n

Atx=a = a =f'(a)

f"(a)=P'(a)=2a, +(3)2)a,(x—a)+...+n(n-1)a,(x—a)"*
Atx=a = a, =%f "(a)
Note: each time we take a derivative we pick up the next integer in other words

a, = L fC(a)

(2)3)

If we define f)(a) to mean the k™ derivative of f evaluated at x = a then

1
& = E f (k)(a)

In General

P.(x)=a, +a,(x—a)+a,(x—a)’ +a,(x—a)’ +..+a,(x-a)"

~ f(a)+ f'(a)(x—a)+% t'(a)x—a) % £ O (a)x—a) +...+$ t0(a)x—a)"

P00 =Y F O @)x-2)"

k=0

This is called the n™ degree Taylor polynomial at x = a.
When a =0, P,(x) is called the n'" McLaurin Polynomial.

0=

2.4 000"
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Example 3: Find the fifth degree McLaurin Polynomial for sin x
f(x) =sin(x) > f(0) = sin(0) =0
f () =cos(x) > fM(0)=cos(0) =1
f @ (x) = - sin(x) -> f@(0) =-sin(0) =0
f® (x) = -cos(x) > £ &)(0) = -cos(0) = -1

f @ (x) =sin(x) > @) =sin(x) =0
f ® (x) = cos(x) > f®(x) = cos(x) =1
So that Ps(x) =0 + 1,492,138, 04,15 _ 13,1
il 2! 3 4 ol 6 120

4. LAGRANGE’S POLYNOMIAL

In this section, we find approximating polynomials that are determined by specifying
certain points on the plane through which they must pass.

Consider the linear polynomial

X—X X—X
P(X): L Yo . Yi» X# X
Xog =X X; = Xg

The linear polynomial passing through (x,, f(x,)) and (x,, f(x, )) was constructed using
the quotients

X=X X=X
Ly(x)= 2 and Ly(x)=——"2
=% e 1= X0

To generalize the concept of linear interpolation, consider the construction of a
polynomial of degree at most n that passes through the n+1 points (x,, f(x,)) ,

(%, T (X))o (X,, T(X,)). We can construct the genetalized quotient:

L )= )G ) () (X ,)
G = X)X = X) -+ (% =X 5) - (% = X;,0) - (X = X,)
T X=X, L
=11:!Xi X, foreachi=0,1, ..., n.

J#i

The interpolating polynomial is easily described if the form of L, (x) is known. This

polynomial, called the n'™" Lagrange interpolating polynomial, is defined in the following
form:

P, (%)= X FO)L 00
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Example 4: By taking the numbers Xo = 2, x1 = 2.5 and x2 = 4, find the second
interpolating polynomial for f(x) = 1 by using Lagrange interpolating polynomial.
X

LO(X): ((X—Xl)(X—XZ) —

Xo _Xl)(XO _Xz) -

X) = (X_XOXX_Xz) _
Ll( )_(Xl_xl)(xl_xz)_

LZ(X): ((X_XO)(X_XI) —

X, _Xo)(xz _Xl) -

P, (X) = 22: f (%)L (X)
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5. NEWTON’S DIVIDED-DIFFERENCE POLYNOMIAL

It is useful to find several approximating polynomials P,(x),P,(x)....,P,(x) and then

choose the one that suits our needs. If the Lagrange polynomials are used, there is no
constructive relationship between P,,(x) and P,(x). Each polynomial has to be

constructed individually, and the work required to compute the higher-degree
polynomials involves many computations. We take a new approach and construct
Newton polynomials that have the recursive pattern.

P:L(X): Ch +a1(x_ Xo)
Pz(x): ay +al(x—x0)+a2(x—x0)(x—xl)
P3(X)= a +a1(x—xo)+a2(x—>.<0)(x—x1)+a3(x—xo)(x—xl)(x—x2)

P.(x)=a, +a,(x—x,)+ az(x—;(o)(x—x1)+ A, (X = Xo X = X, J(X =X, )+t
an(x— Xo)(x_ Xl)(x_ Xz)---(x_ Xn—l)

Suppose that X,,X,,...,x, are n+1 distinct numbers in [a,b]. There exists a unique
polynomial P,(x) of degree at most n with the property that
f(x;)=P,(x;) for j=0.1,...n

The coefficient a,;k =012,...,nof P,(x) depends on the values f(xj) forj=0,1,..., k.
It can be computed using divided-difference.
The divided-difference for a function f(x) are defined as follows:

f[xk]= f(Xk)
f[xk,xkﬂ]:%

f [Xk y Xt s Xk+2] — f [Xk+1l X):+2]: )1(: [Xk , Xk+1]
k+2 k

The recursive rule for constructing higher-order divided differences is

f[Xk,Xk+1,...,xk+j]: f|_Xk+1,---,X,:jJ—_fxl_Xk,...,Xk+j_lJ
K+ j K

and is used to construct the divided-difference in table as follow:
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x|y = f[x] First divided Second divided Third Fourth divided
difference difference divided Difference
difference
Xo Yo
fixoxa] = J04I= Tl
X =Xy
X Y1 flxoxux2] = fD4%1= fIxx]
X, =X
fx1,x2] = fIx,1- fx] f[Xo0,X1,X2,%3]
X=X
X, Y, f[X1,X2,X3] = f[X%] = F[xX,] f[X0,X1,X2,X3,X4]
X3 =X
f[x2,xs] = flx]- %] f[X1,X2,X3,X4]
X3 =X,
X3 Y, flX2,X3,%4] = fIxsX, 1= FIx, ;]
X, — X,
fxax] = 1 Xal= TIX:]
X, — X5
X4 Y4
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Example 5: Let f(x) = x® - 4x. Construct the divided-difference table based on the nodes xo
..., Xs = 6, and find the Newton polynomial P3(x) based on Xo,X1,X2,X3.

=1,x=2,....

Divided difference table:

Xk yk=f[x«] | First divided | Second divided | Third divided | Fourth divided | Fifth divided
difference difference difference Difference difference

Xo=1
X1= 2
X2 =3
Xs3=4
Xa=5
X5 = 6

The Newton polynomial:

Pa(x) =-3+3(x-1)+6(x-1)(x-2)+ (x-1)(x-2)(x-3)

=x3 - 4x
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