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In this Chapter, you will learn: 

• interpolation and extrapolation, 

• three types of least squares approximation, 

• Taylor polynomial, 

• Lagrange’s polynomial, 

• Newton’s divided-difference polynomial. 

 

 

CHAPTER 6 LEAST SQUARES PROBLEMS, INTERPOLATION 

AND POLYNOMIAL APPROXIMATION 

 

 

 

 

 

 

 

1. INTERPOLATION AND EXTRAPOLATION 

 

 

 

 

 

 

Suppose that the function ( )xfy =
 
is known at the (n+1) data points ( ) ( )nn yxyx ,,...,, 00 , 

where the values kx are spread out over the interval  ba,  and satisfy 

,...10 bxxxa n  and ( )kk xfy = . 

A polynomial ( )xPn  of degree n shall be constructed which passes through these (n+1) 

data points. In the construction, only the numerical values kx and ky are needed. Hence, 

the higher-order derivatives are not necessary. The polynomial ( )xPn  can be used to 

approximate over the interval  ba,  . The function ( )kk xfy =  is available only at (n+1) 

tabulated data points and a method is needed to approximate ( )xf  at non-tabulated 

abscissas.  

 

( )xfy =  

0x  

0y  

nx  

ny  

kx  

ky  

a  b  
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Interpolation 

Interpolation is a method of constructing new data points within the range of a discrete 

set of known data points. When nk xxx 0 , the approximation ( )knk xPy =  is called an 

interpolated value. 

Extrapolation 

Extrapolation is a method of estimating, beyond the original interval  ba, . If either 

0xxk   or nk xx   , then the approximation ( )knk xPy =
 
is called an extrapolated value. 

Extrapolation assumes that the behavior of ( )xf  outside the range  ba,  is identical to 

that inside the range and this may not always be valid. 

 

2. LEAST SQUARES APPROXIMATION 

Function approximation is closely related to the idea of function interpolation. In function 

approximation, we do not require the approximating function to match the given data 

exactly. The most common method of approximating data is the least squares 

approximation. 

The method of least squares seeks to minimize the sum (all the tabulated data points) of 

the squares of the differences between the function value and the data value (total squared 

error). The minimum of the total squared error is attained when its partial derivatives are 

zero. 

Linear Least Squares 

 There are n set of observations of related data, ( ) ( ) ( )nn yxyxyx ,,...,,,, 2211 . Let 

bxay +=                                                                         (1) 

be the equation to the linear line of best for them. We have to find the constants a and b. 

For any kx , the expected value of y is ky , the value calculated from the Equation (1) is  

kk bxay +=  

and the observed value of y is iy . The deviation (error) is 

( )iii bxayd +−=  

By giving the values ni ,...3,2,1= , we get the various of deviation. 
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Let ( )baE ,  be the sum of squares of the deviations: 

( ) ( )  +−= 2 , ii bxaybaE  

For ( )baE ,  to be minimum, the conditions are: 

( )
0

,
=





a

baE
 and 

( )
0

,
=





b

baE
 

From the above conditions, we have the following least squares normal equations: 
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We may get the values of a and b by solving the least squares normal equations as shown 

below: 
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By having the values of a and b, we get the equation of the best fit linear line. 
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Example 1: Consider the following data: 

ix  -1 0 1 2 3 4 5 6 

iy  10 9 7 5 4 3 0 -1 

(a) Use the method of least squares to find the equation of the best fit linear line. 

ix  iy  2

ix  ii yx  

-1 10 1 -10 

0 9 0 0 

1 7 1 7 

2 5 4 10 

3 4 9 12 

4 3 16 12 

5 0 25 0 

6 -1 36 -6 

20 37 92 25 
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6428571.8=a   6071429.1−=b  

The equation of the best fit linear line is _________________________ 

(b) Estimate the value of y when .5.1=x  
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Polynomial Least Squares 

The method of least squares approximation data fitting is not restricted to linear function, 

( ) bxaxf +=  only. As a matter of fact, in many cases data from experimental results are 

not linear, so we need to consider some other guess functions. Suppose that the guess 

function for the data is a polynomial. The m-th degree polynomial for n data pairs is 

expressed in the following. 

( )


=

=

+++++=
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According to the least squares approximation, we need to find the coefficients 

maaa ,...,, 10   that minimized 

( ) ( ) 
=
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10  ,...,,   

( )maaaE ,...,, 10  is minimum if  

( ) mjaaaE
a

m

j

,...,1,0   ;0,...,, 10 ==



 

From the above conditions (minimizing the sum of squares), we have m+1 least squares 

normal equations 
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The coefficients maaa ,...,, 10  can be found by solving the matrix of the linear system in 

Equation (2). 

 

 

 

 



TRIMESTER 2                            CMA6134 COMPUTATIONAL METHODS             CHAPTER 6 

Page | 6 KCY/NOORSHAHIDA/THL 

Exponential Least Squares 

In many cases data from experimental tests are not linear. So, we need to fit the data with 

some functions other than polynomial function. Here, we broaden the least squares 

approximation to a popular form, exponential form. 

Suppose we want to fit the data by a non-linear function, exponential function that is 

expressed as 

           bxaey =   or  baxy =                                                        (3) 

The non-linear function in Equation (3) is usually linearized by taking logarithm before 

determining the parameters: 

bxay += lnln  or xbay lnlnln +=  

We now set xXaAyY ln   ;ln   ;ln ===   to get a linear function of x or xln as 

described earlier: 

          bxAY +=  or bXAY +=  

Finally, transform the points ( )ii yx ,  to the points ( )ii yx ln,  or ( )ii yx ln,ln  and use the 

linear least squares described in Section 2.1 to get A  and b . Having obtained A  andb , 

we use the relations 

Aea =   and  bb =  

to obtain a and b. 
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In order to obtain the values of A and b, we must have the following least squares normal 

equations: 

Case 1: bxaey =  

               =+= bxay lnln bxAY +=  
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Case 2: baxy =  

               =+= xbay lnlnln bXAY +=  
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Example 2: Consider the following data, find an equation of the form bxaey =  

ix  0 5 10 15 20 

iy  7 11 16 20 26 

bxay

aey bx

+=

=

lnln
 

Set aAyY ln   ;ln == : bxAY +=  

ix  0 5 10 15 20 50 

iY  1.945910 2.397895 2.772589 2.995732 3.258097 13.370223 

2

ix  0 25 100 225 400 750 

iiYx  0 11.989475 27.72589 44.93598 65.16194 149.813285 
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3. TAYLOR POLYNOMIAL 

Suppose that we want the best nth degree approximation to ( )xf  at ax = .  

We compare ( )xf  to  

( ) ( ) ( ) ( ) ( )n

nn axaaxaaxaaxaaxP −++−+−+−+= ...
3

3

2

210  

We make the following observations:  

 ( ) ( ) 0aaPaf n ==      ( )afa =0  
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Note:  each time we take a derivative we pick up the next integer in other words  
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If we define ( ) ( )af k  to mean the kth derivative of f evaluated at x = a  then  
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This is called the nth degree Taylor polynomial at x = a.  

When a = 0, ( )xPn  is called the nth McLaurin Polynomial.  
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Example 3: Find the fifth degree McLaurin Polynomial for sin x  

 f(x)      = sin(x)  →   f (0)   =  sin(0)  = 0  

 f (1)(x)  = cos(x)  →  f (1)(0) = cos(0)  = 1  

 f (2) (x) = - sin(x)  → f(2)(0)  = -sin(0)  = 0  

 f (3) (x)  = -cos(x)  → f (3)(0) = -cos(0) = -1  

 f (4) (x)  = sin(x)   → f (4)(0) = sin(x)   = 0  

 f (5) (x)  = cos(x)   → f (5)(x) = cos(x)  = 1 

So that  P5(x) = 0 + x
!1

1
  + 2

!2

0
x   + 3

!3

1
x

−
  + 4
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x  + 5
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1
x   =   x    3

6

1
x−   + 5

120

1
x

 
 

 

4. LAGRANGE’S POLYNOMIAL 

In this section, we find approximating polynomials that are determined by specifying 

certain points on the plane through which they must pass. 

 

Consider the linear polynomial  
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The linear polynomial passing through ( )( )00 , xfx  and ( )( )11, xfx  was constructed using 

the quotients 

( )
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To generalize the concept of linear interpolation, consider the construction of a 

polynomial of degree at most n that passes through the n+1 points ( )( )00 , xfx , 

( )( ) ( )( )nn xfxxfx ,,...,, 11 . We can construct the genetalized quotient: 
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for each i = 0, 1, …., n. 

 

The interpolating polynomial is easily described if the form of ( )xLi is known. This 

polynomial, called the nth Lagrange interpolating polynomial, is defined in the following 

form: 

( )
n

n i i

i 0

P x f (x )L (x)
=
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Example 4: By taking the numbers x0 = 2, x1 = 2.5 and x2 = 4, find the second 

interpolating polynomial for f(x) = 
x

1
 by using Lagrange interpolating polynomial. 
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5. NEWTON’S DIVIDED-DIFFERENCE POLYNOMIAL 

It is useful to find several approximating polynomials ( ) ( ) ( )xPxPxP n,...,, 21 and then 

choose the one that suits our needs.  If the Lagrange polynomials are used, there is no 

constructive relationship between ( )xPn 1−  and ( )xPn . Each polynomial has to be 

constructed individually, and the work required to compute the higher-degree 

polynomials involves many computations.  We take a new approach and construct 

Newton polynomials that have the recursive pattern. 

( ) ( )0101 xxaaxP −+=  

( ) ( ) ( )( )1020102 xxxxaxxaaxP −−+−+=   

( ) ( ) ( )( ) ( )( )( )21031020103 xxxxxxaxxxxaxxaaxP −−−+−−+−+=  

            
( ) ( ) ( )( ) ( )( )( )

( )( )( ) ( )1210

2103102010

...             

...

−−−−−

++−−−+−−+−+=

nn

n

xxxxxxxxa

xxxxxxaxxxxaxxaaxP
  

 

Suppose that nxxx ,...,, 10 are n+1 distinct numbers in  ba, .  There exists a unique 

polynomial ( )xPn  of degree at most n with the property that  

( ) ( )jnj xPxf =    for  j = 0,1,….n. 

 

The coefficient nkak ,...,2,1,0; = of ( )xPn  depends on the values ( )jxf  for j = 0, 1,… , k. 

It can be computed using divided-difference. 

The divided-difference for a function ( )xf  are defined as follows: 
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The recursive rule for constructing higher-order divided differences is  
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and is used to construct the divided-difference in table as follow: 
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kx

 

 kk xfy =

 

First divided 

difference 

Second divided 

difference 

Third 

divided 

difference 

Fourth divided 

Difference 

0x

 

0y      
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01 ][][
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Example 5: Let f(x) = x3 - 4x. Construct the divided-difference table based on the nodes x0 

= 1, x1= 2, ……., x5 = 6, and find the Newton polynomial P3(x) based on x0,x1,x2,x3. 

 

Divided difference table: 

 

xk yk=f[xk] First  divided 

difference 

Second divided 

difference 

Third divided 

difference 

Fourth divided 

Difference 

Fifth divided 

difference 

x0 = 1       

       

x1 = 2       

       

x2 = 3       

       

x3 = 4       

       

x4 = 5       

       

x5 = 6       

 

The Newton polynomial: 

P3(x)  = -3 + 3(x - 1) + 6(x - 1)(x - 2) + (x - 1)(x - 2)(x - 3) 

= x3 - 4x 


